The formula for abbreviated multiplication
Formulas of abbreviated multiplication allow you to perform calculations much faster.
The most commonly used abbreviated multiplication formulas:
(a + b)2 = a2 + 2ab + b2
(a − b)2 = a2 − 2ab + b2
(a+b+c)2 = a2 + b2 + c2 + 2ab + 2Ac + 2Bc
a2 − b2 = (a + b)(a − b)
(a + b)3 = a3 + 3a2b + 3ab2 + b3
(a − b)3 = a3 − 3a2b + 3ab2 − b3
a3 + b3 = (a + b)(a2 −ab + b2)
a3 − b3 = (a − b)(a2 + ab + b2)
The abbreviated multiplication formulas are helpful for multiplying or expanding algebraic expressions. They facilitate efficient counting. There are a lot of these patterns. We list a few below, which are used most often.
The square of the sum of the numbers
-
(a + b)2 = a2 + 2ab + b2
e.g: 312 = (30+1)2 = 302+2×30+1 = 900+60+1 = 961 -
does not occur equality: (a+b)2 = a2 + b2
e.g 25 = (3+2)2 ≠ 32 + 22 = 13 -
justification of the formula by the bill:
(a + b)2 = (a + b) × (a + b) = Aa + ab + Ba + Bb = a2 + 2ab + b2
The square of the difference of the numbers
-
(a – b)2 = a2 – 2ab + b2
e.g: 292 = (30-1)2 = 302-2×30+1 = 900-60+1 = 841 -
does not occur equality: (a-b)2 = a2 – b2
e.g 1 = (3-2)2 ≠ 32 – 22 = 5 -
justification of the formula:
(a – b)2 = (a – b) × (a – b) = Aa – ab – Ba + Bb = a2 – 2ab + b2
A square of the sum of three numbers
-
(a+b+c)2 = a2 + b2 + c2 + 2ab + 2Ac + 2Bc
e.g: 1112 = (100+10+1)2 = 1002 + 102 +1 +2×100×10 + 2×100 + 2×10 = 10000 + 100 + 1 + 2000 + 200 + 20 = 12321 -
does not occur equality: (A+B+c)2 = a2 + b2 + c2
e.g 36 = (3+2+1)2 ≠ 32 + 22 + 12 = 14 -
justification of the formula:
(a + b + c)2 = (a + b + c) × (a + b + c) = Aa + ab + Ac + Ba + Bb + Bc + ca + Cb + cc = a2 + b2 + c2 + 2ab + 2Ac + 2Bc
Product of the sum and difference of numbers = Difference of squares of numbers
-
(a + b)×(a – b) = a2 – b2
e.g: 101×99 = (100+1)×(100-1) = 1002 – 1 = 9999 -
justification of the formula :
(a + b) × (a – b) = Aa – ab + Ba – Bb = a2 – b2
A cube of the sum of numbers
-
(a + b)3 = a3 + 3a2b + 3ab2 + b3
e.g: 1013 = (100+1)3 = 1003 + 3×1002 + 3×100 + 1 =
= 1000000 + 30000 + 300 + 1 = 1030301 -
does not occur equality: (a+b)3 = a3 + b3
e.g 125 = (3+2)3 ≠ 33 + 23 = 35 -
justification of the formula by the bill:
(a + b)3 = (a + b) × (a + b) × (a + b) = (Aa + ab + Ba + Bb) × (a + b) = Aaa + aab + aba + fig + Baa + Bab + Bba + bbb =
= a3 + 3a2b + 3ab2 + b3
Cube of number difference
- (a – b)3 = a3 – 3a2b + 3ab2 – b3
e.g: 993 = (100-1)3 = 1003 – 3×1002 + 3×100 – 1 =
= 1000000 – 30000 + 300 – 1 = 970299
Sum of cubes of numbers
a3 + b3 = (a + b)×(a2 – ab + b2)
justification of the formula:
(a + b)×(a2 – ab + b2) = Aa2 – aab + ab2 + Ba2 – Bab + Bb2= a3 – a2b + ab2 + a2b – ab2 + b3 =
= a3 + b3
The difference of the cubes of numbers
a3 – b3 = (a – b)×(a2 + ab + b2)
justification of the formula:
(a – b)×(a2 + ab + b2) = Aa2 + aab + ab2 – Ba2 – Bab – Bb2 = a3 + a2b + ab2 – a2b – ab2 – b3 =
= a3 – b3
Difference of fourth powers of numbers
a4 – b4 = (a – b)×(a3 + a2b + ab2 + b3) = (a + b)×(a3 – a2b + ab2 – b3)
Addition n-these powers of numbers (For n odd!!!)
an + bn = (a + b) (an-1 – an-2b + an-3b2 – … + bn-1)
Difference n-these powers of numbers (For n even!!!)
an – bn = (a + b) (an-1 – an-2b + an-3b2 – … + bn-1)
Difference n-these powers of numbers (for everyone n natural)
an – bn = (a – b) (an-1 + an-2b + an-3b2 + … + a2bn-3 + abn-2 + bn-1)